Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.06.27.545921

ABSTRACT

Respiratory pathogens such as SARS-CoV-2 and influenza can activate an exaggerated inflammatory response (cytokine storm) in the lungs that may result in acute respiratory distress syndrome (ARDS), hospitalization, and death. Therapies that target a specific pathogen (i.e. anti-virals) must, by nature, be selected after a specific diagnosis and may become ineffective due to pathogen evolution. An alternate strategy is to counter the exaggerated innate immune response present in ARDS patients using host-directed drug therapies that are agnostic to the infectious agent to overcome both of these challenges. Originally described as the innate immune receptor for lipopolysaccharide (LPS), Toll-like receptor 4 (TLR4) is now understood to be an important mediator of inflammation caused by a variety of pathogen-associated molecular patterns (PAMPs) and host-derived damage-associated molecular patterns (DAMPs). Here we show that paridiprubart, a monoclonal antibody that prevents TLR4 dimer formation, inhibits the response to TLR4 agonists including LPS, the SARS-CoV-2 spike protein, the DAMP high mobility group box 1 (HMGB1), as well as the NF-{kappa}B response to infection by both viral and bacterial pathogens. Notable in this regard, we demonstrate that SARS-CoV-2 increases HMGB1 levels, and that paridiprubart inhibits both the SARS-CoV-2 and HMGB1-triggered NF-{kappa}B response, illustrating its potential to suppress this self-amplifying inflammatory signal. We also observed that the inhibitory effect of paridiprubart is apparent when cells are exposed to the SARS-CoV-2 spike protein, which is itself a direct TLR4 agonist. In the context of active infection, paridiprubart suppressed the NF-{kappa}B-dependent response elicited by infection with SARS-CoV-2, the seasonal coronavirus 229E, influenza A virus or Haemophilus influenzae, a gram-negative bacterial pathogen. Combined, these findings reinforce the central role played by TLR4 in the inflammatory response to infection by diverse pathogens, and demonstrates the protective potential of paridiprubart-dependent inhibition of pathogenic TLR4 responses.


Subject(s)
Respiratory Distress Syndrome , Meningitis, Haemophilus , Death , Inflammation
2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.06.28.450244

ABSTRACT

SARS-CoV-2, depends on host cell components for replication, therefore the identification of virus-host dependencies offers an effective way to elucidate mechanisms involved in viral infection. Such host factors may be necessary for infection and replication of SARS CoV-2 and, if druggable, presents an attractive strategy for anti-viral therapy. We performed genome wide CRISPR knockout screens in Vero E6 cells and 4 human cell lines including Calu-3, Caco-2, Hek293 and Huh7 to identify genetic regulators of SARS-CoV-2 infection. Our findings identified only ACE2, the cognate SARS-CoV-2 entry receptor, as a common host dependency factor across all cell lines, while all other host genes identified were cell line specific including known factors TMPRSS2 and CTSL. Several of the discovered host-dependency factors converged on pathways involved in cell signalling, lipid metabolism, immune pathways and chromatin modulation. Notably, chromatin modulator genes KMT2C and KDM6A in Calu-3 cells had the strongest impact in preventing SARS CoV-2 infection when perturbed. Overall, the network of host factors that have been identified will be broadly applicable to understanding the impact of SARS-CoV-2 on human cells and facilitate the development of host directed therapies.


Subject(s)
Severe Acute Respiratory Syndrome , Virus Diseases , Graft vs Host Disease , COVID-19
3.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.341636

ABSTRACT

Hybridization is an important evolutionary mechanism that can enable organisms to adapt to environmental challenges. It has previously been shown that the fungal allodiploid species Verticillium longisporum, causal agent of Verticillium stem striping in rape seed, has originated from at least three independent hybridization events between two haploid Verticillium species. To reveal the impact of genome duplication as a consequence of the hybridization, we studied the genome and transcriptome dynamics upon two independent V. longisporum hybridization events, represented by the hybrid lineages A1/D1 and A1/D3. We show that the V. longisporum genomes are characterized by extensive chromosomal rearrangements, including between parental chromosomal sets. V. longisporum hybrids display signs of evolutionary dynamics that are typically associated with the aftermath of allodiploidization, such as haploidization and a more relaxed gene evolution. Expression patterns of the two sub-genomes within the two hybrid lineages are more similar than those of the shared A1 parent between the two lineages, showing that expression patterns of the parental genomes homogenized within a lineage. However, as genes that display differential parental expression in planta do not typically display the same pattern in vitro, we conclude that sub-genome-specific responses occur in both lineages. Overall, our study uncovers the genomic and transcriptomic plasticity during evolution of the filamentous fungal hybrid V. longisporum and illustrate its adaptive potential.

4.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.15.341636

ABSTRACT

The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes Coronavirus Disease 2019 (COVID-19), has caused a global pandemic. Antibodies are powerful biotherapeutics to fight viral infections; however, discovery of the most potent and broadly acting clones can be lengthy. Here, we used the human apoferritin protomer as a modular subunit to drive oligomerization of antibody fragments and transform antibodies targeting SARS-CoV-2 into exceptionally potent neutralizers. Using this platform, half-maximal inhibitory concentration (IC50) values as low as 9 x 10-14 M were achieved as a result of up to 10,000-fold potency enhancements. Combination of three different antibody specificities and the fragment crystallizable (Fc) domain on a single multivalent molecule conferred the ability to overcome viral sequence variability together with outstanding potency and Ig-like in vivo bioavailability. This MULTi-specific, multi-Affinity antiBODY (Multabody; or MB) platform contributes a new class of medical countermeasures against COVID-19 and an efficient approach to rapidly deploy potent and broadly-acting therapeutics against infectious diseases of global health importance. One Sentence Summarymultimerization platform transforms antibodies emerging from discovery screens into potent neutralizers that can overcome SARS-CoV-2 sequence diversity.


Subject(s)
COVID-19
5.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.16.342428

ABSTRACT

Due to the global spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), there is an urgent need for reliable high-throughput serological assays in order to evaluate the immunological responses against SARS-COV-2 virus and to enable population screening, as well as vaccines and drugs efficacy testing. Several serological assays for SARS-CoV-2 are now becoming available in the market. However, it has also become extremely important to have well-established assays with desirable high sensitivity and specificity. To date, the micro-neutralization (MN) assay, is currently considered the gold-standard being capable of evaluating and detecting, functional neutralizing antibodies (nAbs). Several protocols exist for micro-neutralization assays which vary in several steps of the protocol: cell seeding conditions, number of cells seeded, virus amount used in the infection step, virus-serum-cells incubation period etc. These potential differences account for a high degree of variability and inconsistency of the results and using a harmonized protocol for the micro-neutralization assay could potentially solve this. Given this situation, the main aim of our study was to carry out SARS-CoV-2 wild type virus MN assay in order to investigate which optimal tissue culture infective dose 50 (TCID50) infective dose in use is the most adequate choice for implementation in terms of reproducibility, standardization possibilities and comparability of results. Therefore, we assessed the MN by using two different viral infective doses: a standard dose of 100 TCID50/well and a lower dose of 25 TCID50/well. The results obtained, yielded by MN on using the lower infective dose (25 TCID50), were in line with those obtained with the standard infective dose; in some cases, however, we detected a titre that was one or two dilution steps higher, which maintained all negative samples negative. This suggesting that the lower dose can potentially have a positive impact on the detection and estimation of neutralizing antibodies present in a given sample, showing higher sensitivity but similar specificity and therefore, it would require a more accurate assessment and cross-laboratories standardisation especially when MN is employed as serological assay of choice for pre-clinical and clinical studies.

6.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.16.341883

ABSTRACT

Since emerging in late 2019, SARS-CoV-2 has caused a global pandemic, and it may become an endemic human pathogen. Understanding the impact of environmental conditions on SARS-CoV-2 viability and its transmission potential is crucial to anticipating epidemic dynamics and designing mitigation strategies. Ambient temperature and humidity are known to have strong effects on the environmental stability of viruses, but there is little data for SARS-CoV-2, and a general quantitative understanding of how temperature and humidity affect virus stability has remained elusive. Here, we characterise the stability of SARS-CoV-2 on an inert surface at a variety of temperature and humidity conditions, and introduce a mechanistic model that enables accurate prediction of virus stability in unobserved conditions. We find that SARS-CoV-2 survives better at low temperatures and extreme relative humidities; median estimated virus half-life was more than 24 hours at 10 {degrees}C and 40 % RH, but less than an hour and a half at 27 {degrees}C and 65 % RH. Our results highlight scenarios of particular transmission risk, and provide a mechanistic explanation for observed superspreading events in cool indoor environments such as food processing plants. Moreover, our model predicts observations from other human coronaviruses and other studies of SARS-CoV-2, suggesting the existence of shared mechanisms that determine environmental stability across a number of enveloped viruses.

7.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.14.338053

ABSTRACT

The COVID-19 pandemic may create new demand for wildlife-generated products for human health, including a shark-derived ingredient used in some vaccines. Adjuvants are a vaccine component that increases efficacy, and some adjuvants contain squalene, a natural compound derived from shark liver oil which is found most abundantly in deep-sea sharks. In recent decades, there has been growing conservation concern associated with the sustainability of many shark fisheries. The need for a potentially massive number of adjuvant-containing SARS-CoV-2 vaccines may increase global demand for shark-derived squalene, with possible consequences for shark conservation, especially of vulnerable and understudied deep-sea species. A shift to non-animal-derived sources of squalene, which are similar in cost and identical in effectiveness, or an emphasis on increasing traceability and sustainability of shark-derived squalene from existing well-managed fisheries, could better support conservation and public health goals.


Subject(s)
COVID-19
8.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.08.01.20166553

ABSTRACT

While the antibody response to SARS-CoV-2 has been extensively studied in blood, relatively little is known about the mucosal immune response and its relationship to systemic antibody levels. Since SARS-CoV-2 initially replicates in the upper airway, the antibody response in the oral cavity is likely an important parameter that influences the course of infection. We developed enzyme linked immunosorbent assays to detect IgA and IgG antibodies to the SARS-CoV-2 spike protein (full length trimer) and its receptor binding domain (RBD) in serum (n=496) and saliva (n=90) of acute and convalescent patients with laboratory-diagnosed COVID-19 ranging from 3-115 days post-symptom onset (PSO), compared to negative controls. Anti-CoV-2 antibody responses were readily detected in serum and saliva, with peak IgG levels attained by 16-30 days PSO. Whereas anti-CoV-2 IgA antibodies rapidly decayed, IgG antibodies remained relatively stable up to 115 days PSO in both biofluids. Importantly, IgG responses in saliva and serum were correlated, suggesting that antibodies in the saliva may serve as a surrogate measure of systemic immunity.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL